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1 Abstract

Manual image analysis for immunohistochemistry (IHC) images is time consuming and quan-
tification results vary between researchers. This project experimentally determines that a
decision tree machine learning model gives the best results when automating this task, and
implements this model as software to analyze IHC images. These images are of mice brain
slices which have been stained for different neural and neuropathological processes. Soft-
ware allows for more efficient cellular-level quantification and results that are potentially as
reliable as manual techniques. The models are be trained and tested on sample Iba1 images
from Stephanie Tullo’s project in the CoBrA lab.

2 Introduction

Neuropsychiatric disorders are studied using a variety of research methods including be-
havioural tests, assays of brain structure and function, and histological and immunohisto-
chemical (IHC) analyses of brain tissue. IHC combines the immune response of various cells
in the brain, including glial cells and neurons, with the visibility of histochemistry (“Im-
munohistochemistry / IHC Antibody-Brain Tissue”). Immuno-stains produce a variety of
different IHC results depending on the immune response that stain causes. Different stains
cause immune responses in different types of cells. Immuno-stained slices of brain tissue can
be photographed under a microscope with or without fluorescence, depending on the stain.
Once the tissue has been photographed, the IHC image can be analyzed to determine the
number of cells stained.

Analysis of IHC images is typically done manually, and while manual segmentation and
cell counting provide accurate results, the process can be time consuming and subject to
rater bias. Multiple raters can reduce analysis time; however, this adds variance to the
data due to inconsistent inter-rater reliability [2]. Automating this process would benefit
researchers who use IHC imaging by reducing image analysis time and variability.

A variety of approaches have been used to automate cell counting in immunohistochem-
istry images. This automation started by using algorithms based on intensity thresholding,
edge detection, template matching, and active shape models [4].
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As machine learning became more popular, different models have been trained for IHC
image analysis. Machine learning approaches began with basic algorithms including support
vector machines (SVM) and random forests (RF)[4].

Arteta et al. explored the use of SVM for cell detection in microscopy images. Their
algorithm was trained with simple dot annotation on sample images. Their use of SVM
achieved state-of-the-art accuracy on hematoxylin and eosin (H&E)-stained images [1]. H&E
staining reveals a considerable amount of microscopic anatomy, and is used to diagnose a
range of histopathological conditions.

Pham et al. experimented with SVM and RF for cell counting and segmentation of IHC
images in the spinal cord. They performed preprocessing for both algorithms, and their RF
contained 200 bagged classification trees [4].

The purpose of this research project is to design and implement software that uses ma-
chine learning to perform analysis on IHC images. Multiple machine learning models are
evaluated to determine which has the highest performance on the Iba1 sample images pro-
vided by Stephanie Tullo. The decision tree model showed the strongest performance in
both accuracy (77%) and recall (87%) and would be the most useful in laboratory settings.
Accompanying this report is a python script to which researchers can provide their Iba1 IHC
images as input, and the program reports the positive cell count in an accurate and precise
manner.

3 Methods

3.1 Dataset

The data used in this project are from a research project by Stephanie Tullo, and are
IHC IBA1 images of M83 αSynA53T transgenic mice brains, a Parkinson’s Disease model.
The images are split into training and testing sets, and thresholded and segmented to find
candidate patches containing a single cell. These candidate patches are manually tagged as
positive or negative. There are 979 patches total, 837 patches in the training set, and 142
patches in the test set, for an 85-15 train-test split.

3.2 Models

This project follows the structure of the study by Pham et al. who tested multiple models
on IHC image analysis [4]. Images go through a preprocessing pipeline where the signal to
noise ratio is increased; the resulting image undergoes intensity thresholding, and candidate
patches are extracted. Features including shape, texture, and histogram of oriented gradients
are extracted from the patches. Shape features include solidity, orientation, diameter, area,
eccentricity, convex area, major axis length, minor axis length, and extent. Texture features
are based on the MR8 filter banks which include 36 bar and edge filters, a Gaussian filter,
and a Laplacian of Gaussian filter. The eight highest responses are extracted to maintain
rotation invariance. Histogram of Oriented Gradients (HoG) features were also extracted.
These features are normalized using a min-max scaler and input to the models.

Eight models were tested, and the results can be found in the following section. These
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models were implemented using Scikit-learn [3]. The models are evaluated based on accuracy,
recall, and precision as compared to manual analysis as the ground truth. Cross validation
search was used to tune the hyperparameters of each model. For models with less than
1000 hyperparameter combinations, exhaustive grid search was performed. For models with
more than 1000 hyperparameter combinations, randomized search was performed with 1000
iterations to limit computing time.

3.3 Software

The decision tree model is packaged as software for use by researchers. The code is be
available on GitHub with instructions on how to install the requirements and run the script.

4 Results

Of the 142 patches in the test set, 99 are positive, so the accuracy of a model which guesses
positive for every patch is 69.72%. Each of the models investigated performs better than
this baseline, and none of them guesses one class for every instance.

The models tested are a K-nearest neighbours (KNN) classifier with 7 neighbours, a
support vector machine (SVM) classifier with a linear kernel, a SVM classifier with a Radial
Basis Function (RBF) kernel, a Gaussian Process classifier, a Decision Tree classifier with
a max tree depth of 50, a Random Forest classifier of 100 decision trees with a max tree
depth of 50, a multi-layer perceptron (MLP) classifier, and an AdaBoost classifier with 50
estimators. See Table 1 below for the accuracy, recall, and precision of each classifier, and
the number of positive cells they predict. Figure 1 shows their confusion matricies.

Table 1: Performance of each Model on Test Set

Model Accuracy % Recall % Precision % Number of Positive
Cells Predicted

KNN 70.42 78.79 78.79 99
Linear SVM 71.83 73.74 83.91 87
RBF SVM 71.13 74.75 82.22 90

Gaussian Process 71.13 74.75 82.22 90
Decision Tree 76.76 86.87 81.13 106

Random Forest 71.13 74.75 82.22 90
MLP 70.42 74.75 81.32 91

AdaBoost 71.83 75.76 82.42 91
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Figure 1: Confusion Matrices

(a) K-Nearest Neighbors (b) Linear SVM

(c) RBF SVM (d) Gaussian Process

(e) Decision Tree (f) Random Forest

(g) Multi-layer Perceptron (h) AdaBoost
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5 Discussion

These results show that the decision tree model performs better than the other models with
about 77% accuracy. It also has a higher recall score, but the precision is about the same as
the other models. The confusion matrix in figure 1(e) shows that it identifies positive cells
correctly 87% of the time, but only classifies negative patches correctly 53% of the time. The
Linear SVM model does the best at classifying negative patches with the correct label 67%
of the time, but that comes with a trade-off as it only classifies positive cells correctly 74%
of the time for an overall accuracy of 72% and the highest precision score of 84%. AdaBoost
performs similarly well at correctly classifying both classes, but differs with a slightly higher
recall and lower precision than the linear SVM model.

The true number of positive cells in the image is 99, and the KNN model predicts positive
for 99 patches. This is a good result in terms of an accurate cell count, but the model does
not classify negative or positive cells well so its accuracy is only 70%. Decision tree predicts
106 positive patches, while linear SVM predicts 87. These results are as expected since the
decision tree predicts positive cells more accurately and also predicts positive for nearly half
of the negative patches, while the linear SVM is wrong more often in its prediction of positive
cells. The AdaBoost classifier is in the middle of these two and predicts 91 positive cells.

Grid search was used to tune the hyperparameters for the KNN, linear SVM, gaussian
process, and AdaBoost models as they each had less than 1000 hyperparameter combinations.
Randomized search was used for RBF SVM, decision tree, random forest, and MLP models.
There is no significant difference in performance between these two groups, indicating the
search methods perform about the same for tuning hyperparameters for this task.

6 Conclusion and Future Work

The decision tree model showed the strongest performance in both accuracy and recall. It
also provided the cell count closest to the true value aside from KNN. This model would
be the most useful in laboratory settings as it classifies the most positive cells correctly and
allows the researcher to check the positively classified cells and remove false positives. If raw
cell counts are more important than specific cells being classified correctly, the KNN model
provides the correct number of positive cells in this instance.

As future work, this image analysis pipeline could be generalized to other stains. Adding
preprocessing pipelines for other stains will allow the model to classify different biomarkers.
Different IHC stains are used to visualize different cell responses in a brain slice, including
multiple types of glial cells and their activation, neurons, and leukocytes.

This project would also benefit from having a second human rater to compare the ”true”
classifications for each cell. Pham et al. reported a significant difference in cell counts
between raters, so it is possible that the models presented here perform better than another
human when compared to the first rater [4]. Having a second rater would reduce bias in the
model and allow comparison of human vs. human and human vs. model accuracy.
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